Consequences of Climate Change on Ports and Inland Waterways in The Netherlands

Prof.ir.H.Ligteringen

05 June 2009

Ports and Waterways in the Netherlands

Port of Rotterdam

Key figures for 2006:

• Throughput 382 million tons

Total Added Value 17.5 billion Euro

Total employment 140,000 persons

Port of Rotterdam

Maeslant Barrier Rotterdam

Sea Level Rise 0.5 m

1/10 year closure

Amsterdam Ports

Key figures 2006

• Throughput 84.5 million tons

Total Added Value 5.8 billion Euro

Total employment 56,000 persons

Amsterdam Ports

Other Ports

Zeeland Seaports (30.4 mio ton)
Groningen Seaports (4.6 mio ton)
Seaport Moerdijk (13.0 mio ton)

Rivers Rhine and Meuse

Rhine River

Barge transport 2006: 200 million ton (nat. and internat.)

about 235,000 ships passing Lobith

per year

Design discharge :15,000 m³/s (1/1250 yr)

Transport capacity

at low water

: at 2.5 m depth 20% reduction

 $(1000 \text{ m}^3/\text{s})$

River Meuse

Barge transport 2006: 51 million ton (nat. and internat.)

Design discharge : 3800 m³/s (1/1250 yr)

Low water limitations: nil, because the river is canalized

(7 ship locks in NL)

Relevant Climate Effects

Sea Level Rise* (m)

Prediction	2050	2100
KNMI 2006	0.15-0.35	0.35-0.85
IPCC A1FI/Delta Comm.	same	0.55-1.20

^{*} excl. subsidence

From report Delta Commission 2008

Relevant Climate Effects (2)

River discharges (m³/s)

High discharge (1/1250 yr)

	2008	2050	2100
Rhine (Lobith)	15,000	16,000	18,000
Meuse (Borgharen)	3,600	4,200	4,600

Low discharge

Rhine: strong increase periods of low water

Meuse: no effect

General consequences 2050

Winter

- Flooding along the Meuse
- More frequent closure barrages
- SW and N dikes inadequate

Summer

June 5, 2009

- Shortage of fresh water (for agriculture)
- Increase salinity levels in western provinces
- Increase periods of draft restriction on the Rhine

General consequences 2100

Winter

- Flooding along all rivers
- Barrages become insufficient
- All dikes and dunes inadequate

Summer

- Severe shortage of fresh water
- Salinity levels increase
- Unacceptable draft restrictions on the Rhine

Consequences for the ports

Rotterdam

- closure Maeslant Barrier on average 1/yr (2050) and
 7 times per year (2100, SLR 1.3 m) → unacceptable for shipping
- High waterlevels in the Rotterdam area (coincidence of storm surge and high river discharge → more barrages at the landside

Amsterdam and other ports

Limited measures against flooding

New landside barrages

Mitigation draft restrictions Rhine

MSc-thesis 2005 on integral solutions for climate effects (higher **and** lower discharges)

- Most alternatives for higher discharge aggravate the draft restrictions at low discharge
- Most promising alternatives:
 - barge design, reduced draft
 - operational measures, improved RIS, 24-hrs operation in periods of low discharge

Conclusions

Ports

- Mostly "limited" measures against flooding
- Rotterdam: adaptation Maeslantkering by 2100 and additional landside barrages

Waterways

- Mostly "limited" measures against flooding
- Rhine: measures to reduce the draft restrictions